Moving from curiosity driven heat-power devices to useful machines, relieving man and horse from hard labor, the need for understanding and predicting processes lead to the emergence of thermodynamics as a science. As such it basically quantifies the system energy-content and how this changes due to energy exchange with the surroundings in the form of heat and work. It is general, including processes in media of thermo-chemico-electro-magneto-mechanics. It has different faces: continuum/statistical and equilibrium/non-equilibrium. It is qualitative, telling us which processes are impossible, it is philosophical in perhaps showing the direction of the arrow of time, and it is inspiring for those measuring the information content of messages.
The Short Story

For years it was as to see in a glass, in a riddle…

But then to perceive and realize piecewise to finally understand fully.

HISTORIC DIFFICULTIES

- ENERGY IN SYSTEM - ENERGY IN TRANSIT
 (Internal energy – Heat – Work)
- ABSOLUTE (thermodynamic) TEMPERATURE
- ENTROPY
- MIXING CONCEPTS (General Laws and Constitution)
 (early texts in Thermodynamics develop laws for ideal gas)

The problem of ABSTRACT CONCEPTS

What does it mean to understand?
(say energy, entropy, exergy, etc.)

Accept via what is already ‘understood’
(i.e. via accepted concepts and experience)

– or you have seen it often enough that it doesn’t bother you

2. History
- before the heat engine

- There were 4 elements:
 - fire
 - air
 - water
 - earth

 according to Greek pre-Socratic philosopher Empedocles (490–430 BC)

Timeline of heat engine technology

- 60 AD Hero of Alexandria
 - Hero’s wind-powered organ

≈ 1500: Leonardo da Vinci
 - Steam-power cannon

1616 Giovanni Branca: Steam turbine

1698 Thomas Savery: Steam-powered water pump (water out of mines)

1712 Thomas Newcomen: Steam-powered water pump

Sadi Carnot (1796-1832)

- Idea that while energy might never be lost, it might become unavailable (1824)
- Definition of Work. Idea of cycle
- Ideal (reversible) Carnot Cycle
- Idea of Entropy, but it was Clausius that clarified it (symbol S believed to come from Sadi)
Engines

- **1769 James Watt**: improved steam engine
- **1816 Robert Stirling**: hot air engine
- **1859 Etienne Lenoir**: 2-stroke IC-engine
- **1877 Nikolaus Otto**: 4-stroke IC-engine
- **1884 Charles Parson**: Steam turbine
- **1892 Rudolf Diesel**: Diesel engine
- **1929 Felix Wankel**: the rotary Wankel IC-engine

Equilibrium Thermodynamics

- **1676 Boyle-Mariotte law**: $pV = \text{const.}$ (at $T=\text{const.}$)
- **1787 Jacques Charles**: gas law, $p/T = \text{const.}$ (at $V=\text{const.}$) referenced by Gay-Lussac in 1802
- **1824 Sadi Carnot**: the Carnot cycle
- **1849 W. Thomson (Lord Kelvin)**: Term *Thermodynamics* (absolute temperature + version of 2nd law)
- **1850 Rudolf Clausius**: Entropy and 2nd Law
- **1871 James Clerk Maxwell** (with Clausius): Term *Statistical Thermodynamics*
- **1876 Willard Gibbs**: Gibbs free energy G (chem. thermo)

Energy Equivalence

- Adding the same amount of energy as either heat or work to a system at state 1, leads to the same state 2
- Examination of state 2 does not reveal how energy was supplied!

Misconception:
No heat transfer!

Temperature and pressure increases from 1 to 2
Does the gas contain Heat? – or Work?

Nonsense
• **Rudolf Clausius** (1822-1888)
 2. Law (1850)
 What is not possible (the inequality of Clausius)
 For a cycle \(\int \frac{\delta Q}{T} \leq 0 \)

• **Concept of Entropy** (1865)
 For process: \(\int_{A}^{B} \left(\frac{\delta Q}{T} \right)_{\text{rev}} = S_B - S_A \)
 (state property, independent of path)
 In general: \(\delta Q/T \leq dS \)
 Entropy of universe tends to a max.
 Kinetic gas theory (1857)
 (include molecular rotation and vibration)
 (introduce the mean free path)
 Cyclic device as perpetuum mobile
 Violates 2nd Law (Clausius, 1850)
 For \(T_H > T_L \), unless \(Q_L = Q_H < 0 \)

• **On the 2nd Law**
 • **Qualitatively**
 Experience: Some processes possible, others not
 \(\int \delta W \), \(\int \delta Q \)
 So process is irreversible
 • **Quantitatively**
 • Cycle: Inequality of Clausius
 \(\int \frac{\delta Q}{T} \leq 0 \)
 • Process: New state property
 \((\delta Q/T)_{\text{rev}} = dS \)
 In general:
 \(\delta Q/T \leq dS \)

• **Willard Gibbs** (1839-1903)
 (father of mathematical rigor in thermo)
 Gibbs free energy \(G \) (equil. thermo)
 (chemical potential)
 • Formal relations for state properties
 (mixtures – the Gibbs phase rule)
 • Chemical thermodynamics
 • Physical chemistry
• **1848 James Prescott Joule**
 - Velocity of H₂-molecules account for pressure in a gas at given temperature
 - A contribution to the kinetic theory of gases

Statistical Thermodynamics

• **1871 James Cleark Maxwell** (with Clausius): Term: *Statistical Thermodynamics*

• **1877 Ludwig Boltzmann**: (father of Kinetic Theory of Gases and Statistical Mechanics)
 - Quantify Entropy: \(S = k \log W \)
 - \(W = \) number of microstates for given energy

• The Boltzmann (transport) Equation for \(nf(c_1, c_2, c_3) \)

\[
\frac{\partial}{\partial t} (nf) + \sum_{i=1}^{3} \frac{\partial}{\partial x_i} (nf) + \frac{\partial}{\partial c_i} (F_n f) = -\int_{-\infty}^{\infty} \int_{\mathbb{P}_e} n^2 (f(c_i f(\xi_i) - f(c_i f(\xi_i))_0) g \, dP_e \, dV_e
\]

• At equilibrium: \(0 = \int_{-\infty}^{\infty} \int_{\mathbb{P}_e} n^2 (f(c_i f(\xi_i) - f(c_i f(\xi_i))_0) g \, dP_e \, dV_e \)
 - yielding the Maxwell distribution of translational gas:

\[
f_0 = \left(\frac{m}{2\pi kT} \right)^{3/2} e^{-mc^2/2kT} = \left(\frac{m}{2\pi kT} \right)^{3/2} \exp \left[-\frac{m}{2kT} (\xi^2 - \xi_0^2) \right]
\]

• All state properties (U, S, H, F, G, T, p, ...) expressed by molecular distribution function at equilibrium

• Moments of the Boltzmann Equation give the equations of the continuum formulation, including transport properties (k, \(\mu \))

• At global non-equilibrium, flow and transport expressed by small difference: \(f \neq f_0 \)

• **Boltzmann’s H-theorem**
 - From the S-moment of the Boltzmann equation for uniform state:

\[
\frac{dS}{dt} = \frac{kV}{4} \int_{-\infty}^{\infty} \int_{\mathbb{P}_e} \ln \left[\frac{f(c_i f(\xi_i))}{f(c_i f(\xi_i)_0)} \right] \times n^2 (f(c_i f(\xi_i) - f(c_i f(\xi_i)_0)) g \, dP_e \, dV_e
\]

 hence in approaching equilibrium

\[
\frac{dS}{dt} \geq 0,
\]

with \(S = S_{\text{max}} \) at equilibrium (for fixed U and V)
Equilibrium = Max Entropy implies alternatives
From 1st and 2nd Law: \(dS - dU/T + p \, dV \geq 0 \)

- \(S_{U,V} = S_{\text{max}} \), \(U_{S,V} = U_{\text{min}} \), \(H_{S,p} = H_{\text{min}} \), \(A_{T,V} = A_{\text{min}} \), \(G_{T,p} = G_{\text{min}} \)
where each condition depends on specific constraints
\((H = U + pV, A = U - TS, G = H - TS) \)

- Solid mechanicians often use the principle of min elastic (internal) energy at equilibrium, but this apparently assumes that both entropy and volume are kept constant as equilibrium is approached. Are they?

- Reaction chemists use \(G_{T,p} = G_{\text{min}} \), implying the law of mass action and equilibrium concentrations in reacting mixture

Generalized Thermodynamics

- Energy and energy change of system due to exchange of energy with surroundings in the form of heat and work (def. of thermo)

- Many kinds of work, not just compression/expansion of gas or liquid \((\delta W = -p \, dV) \)
- So many kinds of media

Energy exchange as generalized work

<table>
<thead>
<tr>
<th>Reversible work forms (\delta W_{\text{rev}} = F_j , dX_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical</td>
</tr>
<tr>
<td>Compression of fluid</td>
</tr>
<tr>
<td>Stretching elastic rod</td>
</tr>
<tr>
<td>Elastic deformation</td>
</tr>
<tr>
<td>Stretching liquid surface</td>
</tr>
<tr>
<td>Electric</td>
</tr>
<tr>
<td>Polarization</td>
</tr>
<tr>
<td>Magnetic</td>
</tr>
<tr>
<td>Magnetization</td>
</tr>
<tr>
<td>Chemical</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Possible and Impossible Processes

(1) Adiabatic, isobaric mixing process

No problem. Positive entropy production (due to curvature of isobar)

(2) Reversed adiabatic process?

Yes, possible if $p_1 > p_2$ and p_3 in a Ranque-Hilsch device

Need not violate 2.Law!

Anomaly: Heat transfer up temperature gradient in stratified turbulent flow

Ideal gas in stratified centrifugal force field, ru^2, at some $T(r)$

Large turbulent fluctuations u_3 make parcels compress/expand following some polytrop, $pv^n = \text{const}$. Exponent n given by

$$\frac{dT}{dr} = \left(\frac{ru^2}{c_p}\right) \times \frac{\gamma}{(1-\gamma)} \times (1-n)/n$$

If $n = \gamma$: isentropic, $q_r = 0$, no heat transfer

If $n < \gamma$: polytropic, $q_r > 0$, heat transfer up temp.gradient!

Inventions and Perpetuum Mobile

Violation of 1st Law (for cycle)

Violation of 2nd Law

- Not common

- More common

a) Kelvin-Planck statement
b) Clausius statement
Invention

• Anonymous inventor will charge a 12 Volt battery at 50 Watt

• Has seen an electrolytic cell device on the web that, using a battery, produces H\textsubscript{2} and O\textsubscript{2} for a welding torch drawing up to 3000 Watt (www.h2extreme.com)

• Idea: Using his 50 Watt charge, he can get net 2950 Watt worth of useful gas to drive a gas engine

• That will solve the energy problem of his community!

INVENTION: Efficient Power Process

So energy extracted!

\begin{align*}
\text{Air in} & \quad 15.5 \text{ C} \\
\text{So energy extracted!} & \quad \text{Air out} \\
\text{7.1 C} &
\end{align*}

But, 2. Law violated – don’t waist your time checking numbers!

Why it is useful to know Thermodynamics

\[\sigma_{ij} = 2\mu \delta_{ij} + (\kappa \delta_{2k} - p_i) \delta_{ij} \]

(2.3.14)

- Local thermodynamic equilibrium in a compressible fluid in motion implies that bulk viscosity is zero
- If mean negative normal stress should be thermodynamic pressure, \(p = \left[\kappa \left(\frac{1}{\nu} \frac{Dv}{Dt} - p_1 \right) \right] \), it can only depend on state properties like \(T, v \), but not on their rate of change, where from continuity, \(S_{ik} = \partial V_i / \partial x_k = (1/\nu) \frac{Dv}{Dt} \)
- Polyatomic gas: micro-equilibrium for rapid process \(T_1 \neq T_f, \kappa \neq 0 \)

4. Irreversible Thermo
EQUILIBRIUM THERMODYNAMICS:
- Equilibrium States 1, 2, ...
- Net change from 1 to 2 to ...

IRREVERSIBLE (NON-EQUILIBRIUM) THERMODYNAMICS:
- Rate processes in space and time:
 - SKALAR (Local relaxation, chemical reaction, ...)
 - VECTOR (Fluxes of heat, matter, charge, ...)
 - TENSOR (Stress, striction, ... of TEMM continua)

Irreversibel Thermodynamics
(Gibbs, Onsager, Prigogine, Glansdorff, deGroot, Stengers)

From 1st and 2nd laws for continuum
entropy production = driving force × flux
\[\dot{\sigma} = \sum X_j J_j \geq 0, \]
flux = phenomenological coefficient × driving force
\[J_i = \sum_k L_{ik} X_k = L_{ii} X_1 + \ldots + L_{ii} X_1 + \ldots, \]
hence
\[\dot{\sigma} = \sum_i \sum_k L_{ik} X_k X_i \geq 0, \]
subject to restrictions
\[L_{ii} \geq 0; \quad 4L_{ii} L_{kk} - (L_{ik} + L_{ki})^2 \geq 0. \]
Onsager’s reciprocity relations (based on micro-reversibility)
\[L_{ik} = L_{ki}, \]

Vectorial example: Thermodiffusion
Heat and mass fluxes depend on both temp. and conc. gradients
\[\vec{\dot{q}} = -k \vec{\nabla} T - \rho c_1 \vec{\nabla} T \frac{\partial T}{\partial x} \vec{v}_1 \]
\[\vec{J}_i = -\rho c_1 c_2 \frac{\partial T}{\partial x} \vec{v}_1 - \rho \frac{\partial}{\partial x} \vec{v}_1 \vec{c}_1 \]
Binary gas mixture separated by imposed temperature gradient
\[k_T \ln \frac{T_2}{T_1} = c_1(0) - c_1(l) \]
Steady non-equilibrium: \(\sigma_S = \sigma_{S,\text{min}} \)

Non-Equilibrium Thermodynamics
- 1870 Willard Gibbs (1839-1903): Chemical thermodynamics
- 1929 Lars Onsager (1903-1976): Onsager reciprocal relations
- 1970 Ilya Prigogine (1917-2003): dissipative structures, minimum entropy production at steady non-equilibrium state, symmetry breaking, etc
 (Brussels school: Glansdorff, deGroot, Mazur, Stengers)
5. Life

Thermodynamics and living organisms

- Yes, of course – just bio-chemistry and complexity
- Not just energy but **useful energy** matters (also called **exergy** or **availability**)

- What is the efficiency of an IC engine? [20-30% ?]
- What is the efficiency of a living organism, say man?
- As a start, what is the power at rest?
 i.e. the **basal metabolic rate (BMR)**

How to define life?

- Structure in time and space
- Maintained by supply of useful energy (exergy)

- Other details, e.g. growth and reproduction needed to maintain populations ignored here

Human Calorimeter

- Measure sensible and evaporate heat
- via flow, T, x

For ~ 70 kg person, BMR ~ 1 W/kg

25 h record in 24 m³ chamber, Jacobsen et al (1985)
Model of Biological System

Estimate of exergy efficiency at rest (BMR ca. 1 W/kg)

- 70 kg person (exergy consumption: 74 W)
- Estimated irreversibilities at rest:
 - External work 0 W
 - Internal mechanical work 2-3 W
 - Ion pumps, diffusive processes 6 W
 - Synthesis of large molecules 10 W
 - Diverse 1-2 W
 - I alt ca. 20 W
- Exergy efficiency ca. 27%

Man-made power-generating Systems

Require 2 heat reservoirs (except PV- and PE-systems)

Exergy balance:
\[
d(M \xi)/dt + \sum (\psi m)_{ud} - \sum (\psi m)_{ind} = \sum (1-T_0/T_i)Q_i + W - W^{UU} - I_S
\]

for steady cyclic process reduces to the relation for useful work:
\[(-W^U) = \sum (1-T_0/T_i)Q_i - I_S\]
i.e. the Carnot-cycle power minus the irreversibility, \(I_S = \sigma_S T_0 \)

Living organisms operate on chemical energy

Exergy balance for steady, no-work and isothermal processes
\[
d(M \xi)/dt + \sum (\psi m)_{ud} - \sum (\psi m)_{ind} = \sum (1-T_0/T_i)Q_i + W - W^{UU} - I_S
\]

reduces to the relation
\[\Delta G_r = I_S\]

so, the exergy consumption equals the irreversibility

The 1st Law gives the energy lost as heat (–Q)
\[\Delta H_r = Q\]
Conceptual process maintaining structure in time and space

Cell with ion-pumps

~10^{13} cells
~20 \mu m diam.
in
~40 l tissue
~12,000 m^2

Na^+ flux ~ 248 \times 10^{-10} mol m^2 s

Exergy balance for ion pump

\varepsilon = 0.252/1.066 = 0.24

(efficiency for maintaining structure)
6. Arrow of time

- Elastic binary collision
 - Conservation of momentum and energy of \(c_1\) and \(c_2\) particles gives deterministic post-collision parameters \(c'_1\) and \(c'_2\)
 - But correlation between \(c_1\) and \(c_2\) unknown (non-existing i.e. Molecular chaos)

Classical dilemma of Kinetic Theory
- Consider ideal, monatomic gas (translation only)
- Use a hard-sphere elastic collision model
- Each collision is perfectly reversible
- Yet, the solution (analytical or numerical) to problem of an initial non-equilibrium distribution relaxing to the equilibrium Maxwell distribution is irreversible with a clear increase in entropy (decreasing H-function)
- How come?
 - A result of statistics: pre-collision particle-parameters are random (in Monte-Carlo simulation chosen at random), so formulation and solution procedure is not deterministic

Molecular chaos: Parameters of two colliding particles uncorrelated

The arrow of time and increase of Entropy

Ehrenfest’s urn model (a Markov process)

Evolution follows the Boltzmann H-function

Arrow of time is not present (apparent) in laws of nature,
-- but it’s due to our decision to use present information to predict future behavior (usually by probabilistic means)

Probabilities of future events are usually determined by probabilities of past events
Experimentalists have no doubt of arrow of time

- Unsteady Conduction
- Solution

 Time reversal is meaningless

 - Try it! i.e. solve

\[
-\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}; \quad T(x,0) = 1 - x; \quad T(0,t) = 1; T(1,t) = 0
\]

Arrow of time quote:

- Albert Einstein:

 - “the distinction between past, present and future is an illusion – although a persisting one”

 - Like quantum mechanics, he opposed introduction of irreversibility into physics

 - A wisecrack:

 - “the reason that time advances is that otherwise everything would happen at once”

Thermodynamics and Cosmology

- After ‘big bang’, early matter was rather uniformly distributed (high entropy?)
- As universe expanded it became very structured and organized with galaxies, solar systems etc. (low entropy?)

- How to explain?

 - Perhaps gravitational fields possess entropy:

 - Low, when uniform - High, when structured

 So, \(S_{\text{Universe}} = S_{\text{matter}} + S_{\text{gravitation}} \)

 - or the entropy of black holes is very large?

7. Information

PCW Davies (1983), MM Waldrop, Science, Vol. 219
Information Entropy

• Claude Shannon (1948): Theory of communication
 Probably the most irreversible process:
 “The increase of information”

• John von Neumann (1949): call it Entropy!

• E.T. Jaynes (1957): Thermodynamic Entropy =
 “Just a special case of Information Entropy”