MOTIVATION FOR STRAIN GRADIENT PLASTICITY:
The Size Effect in Wire Torsion (Fleck, Muller, Ashby & Hutch, 1994)
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Q ~Torque; a~ wire radius; K ~ twist per length
For macroscopic plasticity, dimensional analysis implies

Q/ a’ versus xa is independent of wire radius a

A strong size effect emerges for torsion (but NOT tension) of wires
with diameters in the tens of microns

Strain gradient plasticity: theory versus experiment

Norman A Fleck
Cambridge University Engineering Dept.

Summary

* Review of experimental evidence for size effects
- torsion, shear, bending, grain boundary roughening, indentation

* A flow theory with strain-gradient effects ( Fleck-Willis, 2008)
- with extremum principles, including the rigid, hardening limit

+ Case studies:
- predicted size effects for beams in bending and metallic foams
- a layer in shear (compare with discrete dislocation simulations)

Microbending tests

* The microbending of thin foils is a fundamental
material test to underpin strain-gradient plasticity
theories

« In the Stolken & Evans (1998) set up, a thin foil is
bent over a circular cylindrical bar whose diameter
sets the value of applied curvature; the moment is
deduced from elastic spring back upon release:
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When are strain gradients significant ? When strains vary over microns..
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Fig. 4, Sketch showing that a gradient of slip in the x,
direction causes a density pg of geometrically necessary
dislocations to be stored. Plastic slip is assumed to occur on
a single slip system with unit normal m alighed with the x,
axis, and slip direction s aligned with the x, axis,
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Experimental results on Ni foils

Uniaxial response

Indentation size effect in nanocrystalline alloys
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| Elementary powders | powder size~350pm
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* Vacuum atmosphere
« Balls & vessel made of steel

* Milling time=9 hours
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with a jump in plastic strain, tem. v Vv ¥ * rapid manufacturing of small parts
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and give strengthening. (Usual interpretation) — -« l « powders are melted/partly melted
t * *pressure * nanostructure is lost

OR, Grain boundaries can act as obstacles
without storage of GNDs, as shown here.
There is no jump in plastic strain but

grain boundary dislocations still accumulate
and give strengthening.

« fast cooling rates

« fully dense pieces

* phase transformations
* nanostructure is preserved

* porosity of ~5%

Plastic strain is almost continuous at interfaces, but they still
lead to the Hall-Petch effect.

SEM images of a grain boundary in aluminium sheet at

a uniaxial strain of 10%. Grain size =5mm, thickness = 1mm

Size effects persist into the creep regime,
and of similar magnitude !
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Elements of gradient plasticity theory
(Gudmundson (2004); Fleck & Willis, 2008)

ui,gij-)L are the basic kinematic quantities at each point x
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Neglect internal interfaces, and
assume internal virtual work has elastic work and plastic dissipation:
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Take as constitutive law: 0 = Ly (5k1 — &k )

Need a constitutive law for Q and 7 in terms of plastic strain + its gradient...

Interfaces disrupt the Voigt bound!
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Figure 1. (a) Vickers hardness of Fe—Cu nanocrystalline composites (L~ 40 nm) versus the volume
fraction of Fe, from [4]. (b) Elementary Voigt bounds for the effective strength of a two-phase
composite with interfaces, as a function of volume fraction ¢ of the hard phase.

Table 1. Idealized two-phase nanocrystalline material with interfaces.
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Yield condition at a material point within V
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Associated plastic flow:
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Minimum principles exist to solve the rate problem.

Possible size effects in a sandwiched aluminium film under shear

Multiple slip systems in
¢ F FCC Al allows for shearing
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Case Study: shear of a thin layer
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Minimum Principle I: determination of plastic strain rate field

Assume a trial field g;’“
0
St ti
n
P _ Pr_ PL* 0. PL*
The actual solution is: = 11I:lLf* J;/{z E %’V, J'ST {,Ugy };/S
&ij

The solution for ris unique, and plastic strain rate is unique up to a multiplier A

. 1 L
;‘L( )= Aé‘,'j (X) where Vj, J;/a {gij‘gij }dVa =1

Rigid-hardening solid
Deep in the plastic range, we can neglect elasticity. Then, é;L z%(a,-‘j +u'j’,~)
Minimum Principle | becomes: =inf J;/{z EP LIV { U +RO(D% )}IS

For a conventional solid, Hill (1948): H = lnf L{Jygeﬁf }dV {Toul }d

Minimum Principle Il becomes: minimise J where

J(i)=1 L{HEP*Z}dV - i + 80(pa )} as
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Compare for conventional solid, Hill (1956) : J(i*):%L{Hg:ﬂz}dV - Is {T,Ou,*} ds

Minimum Principle Il: determination of velocity field and 4

Assume £;; (x) is known.
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Strain-gradient plasticity analysis
* The “effective” strain rate is T2
. 2
Ep = \/ S (epreht + oebhelh) = ([ + (eep)?

» Decompose ép(x2)

. = | .
ép(xz2) = Aép(z2), E/. E%:(Ia)dfca =1, A>0
0

(=2

“magnitude” “unit” distribution dzo

* First minimum principle: given the current state, minimize
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Application to the
bending of thin foils

Elasto-plastic foils

Uniaxial response Moment-curvature relation
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» predictions show increasing yield moment & hardening rate with decreasing foil thickness

» bending moment is elevated by a factor of ~2.5 when (¢/H) goes from 0 to 1

T2

Strain-gradient plasticity analysis

Traction-free )
boundaries

[ —

Z1

 Basic assumptions:

» material is homogeneous, isotropic and incompressible; dissipative plasticity

« curvature is applied via displacement boundary conditions at the ends of the foil

« traction-free top and bottom boundaries

« infinitesimal deformations; plane strain conditions

« total and plastic strain-rate fields:

€11 = —€a2 = KTz, €12=0, £&3=0
e = —€5y = (V3/2)ép(z2), €l =0, eRF=0

Idiart, Deshpande, Fleck, Willis, submitted to Int. J. Engrg. Sci.




Application to open-cell metallic foams
i
0—0 ~ fy (
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Rigid-plastic approximation — Linear hardening

Moment-curvature relation
.

Uniaxial response
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« closed-form moment-curvature relation:

M 2
My = fy(¢/H) + afu(¢/H) ﬁHﬂ

The sandwiched sheared single

crystal problem

Rigid-plastic approximation — Linear hardening

Yield point Hardening rate

fy(B) = V1+ 2 + FPsinh ' (67) fn(B) = (2/3)(1 +367)

f 2.5
Yy
LIGA Ni foils
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« closed-form expressions for power-law hardening also available

« these expressions provide a simple means of extracting material length scales from data

1




Model Problem of a prototypical single crystal

u,=U,1u,=0 };](]“):0

H Two slip planes
- _}t_ a=12, o =+30°
u,=u,=0 k3
» _ -
height of the crystal Slip direction vector
height of the interface s;“) = cos (pw)ei(l) +sin (p(“)efz)

Unit normal of the slip planes

H:

h:

E, : Young’s modulus of bulk
E,:

Young’s modulus of interface

(@) i (@) (D) (@) ,(2)
. . m:"’ =—sin e’ +cos e
v: Poisson ratio ! ¢ e ¢ e

O Subscripts: B for the bulk O Plastic response for interface
crystal & 7 for the interface and bulk is the same

Possible size effects in a sandwiched aluminium film under shear

Multiple slip systems in
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Strain Gradient Crystal Plasticity Theory

# Kinematics

. _ . _ae Ly P .(a) (a)
& =(u,, )Symm =é+el, & =271,
a

Schmid orientation tensor:

,ul.(i“) = (si(”)m(f”’) + m;“)sf") )/2 Ax,
Slip direction vector Unit normal of the slip planes
59 = cos Ve +sin p'“e? m'® =—sin p'”e” +cos p'”e?

Gurtin (2002), Borg (2007), Fleck and Willis (2009a)

Do sheared single crystals exhibit size effects?

¥ When a single crystal is under simple shear theoretical results predict strong
size effects, assuming full plastic contraint at the interface...

MPa
A

Shear stress,

] ¥ 0 a a0l 002 [
UL Shear strain, T

Gurtin et al. (2007) Fleck and Willis (2009a) Danas et al. (submitted)

a

¥ Recent (unpublished) experimental results by Tagarielli and Fleck (20097?)
indicate negligible size effects upon shearing of single aluminium crystals ???

the joining of two dissimilar solids by diffusion bonding) generates an
interface of finite thickness with an internal structure that is more
amorphous than that of the bulk and consequently more compliant.

l One possible explanation: manufacture of the sandwich specimen (e.g.,




Discrete Dislocation framework — Plane Strain

# At a given instant in time: [ u, =u,+u, &

# (~) fields — sum of the singular equilibrium fields of the individual dislocations
Nd Nzl Nzl
i,=Ya", &=>2&" 6=>6" 6"=0
J=1 J=l J=1

# (/) fields —image non-singular fields that correct for the boundary conditions

Van der Giessen and Needleman (1995), Deshpande and coworkers (2001, 2002, 2005, 2008)

Strain Gradient Crystal Plasticity Theory

# Principle of Virtual Work

Independent variables: 1, ;/;"),7/;”") mmm) Conjugate variables: o'ij,q(”‘),z'i(")

f (a,.jaé,.j +> (¢ — 0, 1) 570 + Y r,<a>5y';3>jdV = j(T,au,. + Zt(“)é;?;’”JdS
12 a @ “

N

-

: — _ @ _ @ _ @
Field equations: C,; = 0, ¢ T = Oyl
Boundary Tractions: T,=o;n,, 2 =7“n on S
. ) _ (a) _ ()0 S
Displacement BC: u=u,, ¥, =7, on o,

Gurtin (2002), Borg (2007), Fleck and Willis (2009a)

DD short range interaction and motion

# Dislocation dipoles with Burgers vector b are nucleated at randomly distributed
point sources (Frank-Read) when the resolved shear stress takes a value 7,

# The glide component of the Peach-Koehler force, and dislocation motion :

0 _— 0| & () ) (N — £l
f=s {6y+20'” }bj , v =f"/B,,

J#I

# Annihilation of two opposite signed dislocations on a slip plane occurs when
in a material dependent critical annihilation distance L, .

# The obstacles to dislocation motion are randomly distributed points on the
slip planes. An obstacle releases a pinned dislocation when the Peach-Koehler
force on the obstacle exceeds 7, b.

Strain Gradient Crystal Plasticity Theory

# Constitutive equations
Uler2) =0, E05 ) (LT

[ q(fl) — qE(fZ) +qD(a)’ Ti(fl) — z.iE(fl) +,[.l_D(a) }

Energetic terms Dissipative terms
12
( ) _ (a) (a) ( ) _ (a) (a)
D= (|7 4 Ly s ) O = (|7 P + 1705
energetic length scale dissipative length scale
1
e o, 7@ "
defect energy: Ul(,a) G(]QED[)) dlsflpiju?_n ) = 70 (—j
2 potential: m+1 7
E .
q (@) _ aU(”) /a}/(a) D(a) a¢ /6}/;0()
2@ = gu'® 1 oy 2@ = o) oy




DD Shear Stress — Shear Strain results

[Sensitivity analysis of the Young’s moduli ratio £, / E }

Small crystal Large crystal
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Result: Size effects significantly reduce as interfaces become more compliant!

Contours of Shear Stress from DD calculations
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- Higher stresses develop in thinner films due to the back stress generated by dislocation
pile-ups inhibiting nucleation throughout the film

SGP vs. DD flow strength collective results
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In the SGP calculation we use the length scales: | [, =/, =L, =0.25um, L, = 2LB}

The flow strength is defined as the average shear stress over the interval 1% <T" < 2%
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Concluding remarks

g [t is now generally accepted that size effects exist in plasticity, although
there remains debate as to the cause. A number of continuum theories
have emerged, and are in broad agreement with discrete dislocation
simulations.

& The constitutive response of an interface remains an open issue, and
critical experiments are still needed to give insight into the flow
resistance by an interface.




